Robots are traditionally bounded by a fixed embodiment during their operational lifetime, which limits their ability to adapt to their surroundings. Co-optimizing control and morphology of a robot, however, is often inefficient due to the complex interplay between the controller and morphology. In this paper, we propose a learning-based control method that can inherently take morphology into consideration such that once the control policy is trained in the simulator, it can be easily deployed to robots with different embodiments in the real world. In particular, we present the Embodiment-aware Transformer (EAT), an architecture that casts this control problem as conditional sequence modeling. EAT outputs the optimal actions by leveraging a causally masked Transformer. By conditioning an autoregressive model on the desired robot embodiment, past states, and actions, our EAT model can generate future actions that best fit the current robot embodiment. Experimental results show that EAT can outperform all other alternatives in embodiment-varying tasks, and succeed in an example of real-world evolution tasks: stepping down a stair through updating the morphology alone. We hope that EAT will inspire a new push toward real-world evolution across many domains, where algorithms like EAT can blaze a trail by bridging the field of evolutionary robotics and big data sequence modeling.
translated by 谷歌翻译
Deep reinforcement learning has recently emerged as an appealing alternative for legged locomotion over multiple terrains by training a policy in physical simulation and then transferring it to the real world (i.e., sim-to-real transfer). Despite considerable progress, the capacity and scalability of traditional neural networks are still limited, which may hinder their applications in more complex environments. In contrast, the Transformer architecture has shown its superiority in a wide range of large-scale sequence modeling tasks, including natural language processing and decision-making problems. In this paper, we propose Terrain Transformer (TERT), a high-capacity Transformer model for quadrupedal locomotion control on various terrains. Furthermore, to better leverage Transformer in sim-to-real scenarios, we present a novel two-stage training framework consisting of an offline pretraining stage and an online correction stage, which can naturally integrate Transformer with privileged training. Extensive experiments in simulation demonstrate that TERT outperforms state-of-the-art baselines on different terrains in terms of return, energy consumption and control smoothness. In further real-world validation, TERT successfully traverses nine challenging terrains, including sand pit and stair down, which can not be accomplished by strong baselines.
translated by 谷歌翻译
We study the problem of learning online packing skills for irregular 3D shapes, which is arguably the most challenging setting of bin packing problems. The goal is to consecutively move a sequence of 3D objects with arbitrary shapes into a designated container with only partial observations of the object sequence. Meanwhile, we take physical realizability into account, involving physics dynamics and constraints of a placement. The packing policy should understand the 3D geometry of the object to be packed and make effective decisions to accommodate it in the container in a physically realizable way. We propose a Reinforcement Learning (RL) pipeline to learn the policy. The complex irregular geometry and imperfect object placement together lead to huge solution space. Direct training in such space is prohibitively data intensive. We instead propose a theoretically-provable method for candidate action generation to reduce the action space of RL and the learning burden. A parameterized policy is then learned to select the best placement from the candidates. Equipped with an efficient method of asynchronous RL acceleration and a data preparation process of simulation-ready training sequences, a mature packing policy can be trained in a physics-based environment within 48 hours. Through extensive evaluation on a variety of real-life shape datasets and comparisons with state-of-the-art baselines, we demonstrate that our method outperforms the best-performing baseline on all datasets by at least 12.8% in terms of packing utility.
translated by 谷歌翻译
Deep 3D point cloud models are sensitive to adversarial attacks, which poses threats to safety-critical applications such as autonomous driving. Robust training and defend-by-denoise are typical strategies for defending adversarial perturbations, including adversarial training and statistical filtering, respectively. However, they either induce massive computational overhead or rely heavily upon specified noise priors, limiting generalized robustness against attacks of all kinds. This paper introduces a new defense mechanism based on denoising diffusion models that can adaptively remove diverse noises with a tailored intensity estimator. Specifically, we first estimate adversarial distortions by calculating the distance of the points to their neighborhood best-fit plane. Depending on the distortion degree, we choose specific diffusion time steps for the input point cloud and perform the forward diffusion to disrupt potential adversarial shifts. Then we conduct the reverse denoising process to restore the disrupted point cloud back to a clean distribution. This approach enables effective defense against adaptive attacks with varying noise budgets, achieving accentuated robustness of existing 3D deep recognition models.
translated by 谷歌翻译
Due to the ambiguity of homophones, Chinese Spell Checking (CSC) has widespread applications. Existing systems typically utilize BERT for text encoding. However, CSC requires the model to account for both phonetic and graphemic information. To adapt BERT to the CSC task, we propose a token-level self-distillation contrastive learning method. We employ BERT to encode both the corrupted and corresponding correct sentence. Then, we use contrastive learning loss to regularize corrupted tokens' hidden states to be closer to counterparts in the correct sentence. On three CSC datasets, we confirmed our method provides a significant improvement above baselines.
translated by 谷歌翻译
尽管在各种应用中取得了突出的性能,但点云识别模型经常遭受自然腐败和对抗性扰动的困扰。在本文中,我们深入研究了点云识别模型的一般鲁棒性,并提出了点云对比对抗训练(PointCat)。 PointCat的主要直觉是鼓励目标识别模型缩小清洁点云和损坏点云之间的决策差距。具体而言,我们利用有监督的对比损失来促进识别模型提取的超晶体特征的对齐和均匀性,并设计一对带有动态原型指南的集中式损失,以避免这些特征与其属于其属于其归属类别群的偏离。为了提供更具挑战性的损坏点云,我们对噪声生成器以及从头开始的识别模型进行了对手训练,而不是将基于梯度的攻击用作内部循环,例如以前的对手训练方法。全面的实验表明,在包括各种损坏的情况下,所提出的PointCat优于基线方法,并显着提高不同点云识别模型的稳健性,包括各向同性点噪声,LIDAR模拟的噪声,随机点掉落和对抗性扰动。
translated by 谷歌翻译
命名实体识别(NER)是检测和对实体跨越文本的跨度的任务。当实体跨越彼此之间的重叠时,此问题被称为嵌套NER。基于跨度的方法已被广泛用于应对嵌套的NER。这些方法中的大多数都会获得分数$ n \ times n $矩阵,其中$ n $表示句子的长度,每个条目对应于跨度。但是,先前的工作忽略了分数矩阵中的空间关系。在本文中,我们建议使用卷积神经网络(CNN)对分数矩阵中的这些空间关系进行建模。尽管很简单,但在三个常用的嵌套NER数据集中进行的实验表明,我们的模型超过了几种具有相同预训练的编码器的最近提出的方法。进一步的分析表明,使用CNN可以帮助模型更准确地找到嵌套实体。此外,我们发现不同的论文对三个嵌套的NER数据集使用了不同的句子引导,这将影响比较。因此,我们发布了一个预处理脚本,以促进将来的比较。
translated by 谷歌翻译
现有视频超分辨率(VSR)算法的成功主要是从相邻框架中利用时间信息。但是,这些方法都没有讨论带有固定物体和背景的贴片中时间冗余的影响,并且通常使用相邻框架中的所有信息而没有任何歧视。在本文中,我们观察到时间冗余将对信息传播产生不利影响,这限制了最现有的VSR方法的性能。在这一观察结果的推动下,我们旨在通过以优化的方式处理时间冗余贴片来改善现有的VSR算法。我们开发了两种简单但有效的插件方法,以提高广泛使用的公共视频中现有的本地和非本地传播算法的性能。为了更全面地评估现有VSR算法的鲁棒性和性能,我们还收集了一个新数据集,其中包含各种公共视频作为测试集。广泛的评估表明,所提出的方法可以显着提高野生场景中收集的视频的现有VSR方法的性能,同时保持其在现有常用数据集上的性能。该代码可在https://github.com/hyhsimon/boosted-vsr上找到。
translated by 谷歌翻译
CutMix是一种流行的增强技术,通常用于训练现代卷积和变压器视觉网络。它最初旨在鼓励卷积神经网络(CNN)更多地关注图像的全球环境,而不是本地信息,从而大大提高了CNN的性能。但是,我们发现它对自然具有全球接收领域的基于变压器的体系结构的好处有限。在本文中,我们提出了一种新型的数据增强技术图,以提高视觉变压器的性能。 TokenMix通过将混合区分为多个分离的零件,将两个图像在令牌级别混合。此外,我们表明,Cutmix中的混合学习目标是一对地面真相标签的线性组合,可能是不准确的,有时是违反直觉的。为了获得更合适的目标,我们建议根据预先训练的教师模型的两个图像的基于内容的神经激活图分配目标得分,该图像不需要具有高性能。通过大量有关各种视觉变压器体系结构的实验,我们表明我们提出的TokenMix可以帮助视觉变形金刚专注于前景区域,以推断班级并增强其稳健性,以稳定的性能增长。值得注意的是,我们使用 +1%Imagenet TOP-1精度改善DEIT-T/S/B。此外,TokenMix的训练较长,在Imainet上获得了81.2%的TOP-1精度,而DEIT-S训练了400个时代。代码可从https://github.com/sense-x/tokenmix获得。
translated by 谷歌翻译
强化学习(RL)通过与环境相互作用的试验过程解决顺序决策问题。尽管RL在玩复杂的视频游戏方面取得了巨大的成功,但在现实世界中,犯错误总是不希望的。为了提高样本效率并从而降低错误,据信基于模型的增强学习(MBRL)是一个有前途的方向,它建立了环境模型,在该模型中可以进行反复试验,而无需实际成本。在这项调查中,我们对MBRL进行了审查,重点是Deep RL的最新进展。对于非壮观环境,学到的环境模型与真实环境之间始终存在概括性错误。因此,非常重要的是分析环境模型中的政策培训与实际环境中的差异,这反过来又指导了更好的模型学习,模型使用和政策培训的算法设计。此外,我们还讨论了其他形式的RL,包括离线RL,目标条件RL,多代理RL和Meta-RL的最新进展。此外,我们讨论了MBRL在现实世界任务中的适用性和优势。最后,我们通过讨论MBRL未来发展的前景来结束这项调查。我们认为,MBRL在被忽略的现实应用程序中具有巨大的潜力和优势,我们希望这项调查能够吸引更多关于MBRL的研究。
translated by 谷歌翻译